An Experimental Evaluation of Probabilistic Simulation

نویسندگان

  • Jonathan Bogdoll
  • Holger Hermanns
  • Lijun Zhang
چکیده

Probabilistic model checking has emerged as a versatile system verification approach, but is frequently facing state-space explosion problems. One promising attack to this is to construct an abstract model which simulates the original model, and to perform model checking on that abstract model. Recently, efficient algorithms for deciding simulation of probabilistic models have been proposed. They reduce the theoretical complexity bounds drastically by exploiting parametric maximum flow algorithms. In this paper, we report on experimental comparisons of these algorithms, together with various interesting optimizations. The evaluation is carried out on both standard PRISM example cases as well as randomly generated models. The results show interesting time-space tradeoffs, with the parametric maximum flow algorithms being superior for large, dense models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of simulation model for performance evaluation of feed water system in a typical thermal power plant

The present paper deals with development of a simulation model for the performance evaluation of feed water system of a thermal power plant using Markov Birth-Death process and probabilistic approach. In present paper, the feed water system consists of four subsystems. After drawing transition diagram for feed water system, differential equations are developed and then solved recursively using ...

متن کامل

Probabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation

Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pill...

متن کامل

Hybrid Probabilistic Search Methods for Simulation Optimization

Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...

متن کامل

Evaluation and Ranking of Discrete Simulation Tools

In studying through simulation, choosing an appropriate tool/language would be a difficult task because many of them are available. On the other hand, few research works focus on evaluation of simulation tools/languages and their comparison. This paper makes a couple of evaluations and ranks more than fifty simulation tools that are currently available. The first evaluation and ranking is in th...

متن کامل

Designing of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network

Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008